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Abstract. The correlations of the free-energy landscape of mean-field spin glasses at different
temperatures are investigated, concentrating on models with a first-order freezing transition.
Using a ‘potential function’ we follow the metastable states of the model in temperature, and
discuss the possibility of level crossing (which we do not find) and multifurcation (which we
find). The dynamics at a given temperature starting from an equilibrium configuration at a
different temperature is also discussed. In the presence of multifurcation, we find that the
equilibrium is never achieved, leading to an aging behaviour at slower energy levels than usual
aging. The relevance of the observed mechanisms for real structural glasses is discussed, and
some numerical simulations of a soft sphere model of glass are presented.

1. Introduction

Free-energy landscapes in high-dimensional spaces have been used for a long time as
metaphors for describing the physics of complex systems as glasses and spin glasses, and
also proteins and evolutionary fitness landscapes [1]. The basic idea of this approach
is that complex system dynamics can be viewed as a search for optima in a rough
hypersurface. Although free-energy surfaces can in principle be defined for large classes of
finite-dimensional models, the actual construction of such functions has been achieved only
in the case of long-range disordered systems (mean-field spin glasses), which relevance for
finite-dimensional spin glasses has been a subject of a long debate, growing evidence [2]
pointing in the direction that mean-field theory is a good starting point to describe finite-
dimensional physics. Thoulesset al [3] (TAP) showed that stable and metastable states
of long-range spin glasses are associated to minima of a suitable free energy, which is
a random function in aN (→ ∞) dimensional space. The complex phenomenology of
equilibrium spin glasses can be read as a set of propositions about the low-lying minima of
the TAP free energy, and the barriers separating them.

Due to the random character of the TAP free-energy function, analytic statements on the
structure of the stationary point have an inescapable statistical character. Various techniques
have been invented to study the minima of TAP free energy, and the structure of the stable
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and metastable minima for the fixed external parameter is known in great detail, and gives
a coherent picture of the glassy transition. Two classes of models are known, according to
the order of the freezing transition. In models such as the Sherrington–Kirkpatrick models,
which display a second-order phase transition, the metastable states of the TAP free energy
do not play an important physical role. A second-order transition suggests a mechanism
of bifurcation (or rather multifurcation) of the paramagnetic minimum asTc is crossed. In
off-equilibrium dynamics it is found that all the extensive quantities tend to their equilibrium
values for large times. Whereas these mean-field models, with continuous transition, seem
to apply for the description of real spin glasses, a second class of models, such as, for
example the Potts glass, show a first-order freezing transition, and seem closer to describing
the physics of structural glasses. Indeed, for these models a purely dynamical transition
occurs where the relaxation time diverges, while the static thermodynamic quantities show
singularities only at a lower temperature. Below the dynamical transition temperature,
metastable states dominate the physics, and, dynamically, the extensive quantities do not
tend to their equilibrium values if a random initial condition is chosen. Statically, the
partition function is dominated by metastable states (between the statical and the dynamical
transitions, by an exponentially large number of mutually inaccessible states) that the system
is unable to dynamically reach.

The scenario in which the barriers between metastable states are infinite, and where
a quenched system never reaches any of these states, is clearly linked to the mean-field
approximation. For finite systems, metastable states have a finite lifetime, and the system
should be able to find them in a finite time. The time, and the states the system is able to find,
can depend, for example on the cooling rate. A modified scenario would include ‘activated
processes’ and suppress the divergence of relaxation times at the dynamical transition,
replacing it by a rapid increase (with divergence only at the static transition).

This picture, as was already advocated in [4–6] and more recently in [7], could be
relevant for real glasses: indeed, the glass transition temperature is also a purely dynamical
quantity, defined by the fact that the relaxation time reaches a certain value, the existence
of a static transition at a lower temperature still being a subject of debate. Below this
temperature, the system remains out of equilibrium for all available timescales, and static
quantities are not reached. In the same way, the aforementioned scenario would yield a glass
transition (corresponding to a large but finite value of the relaxation time) occurring above
the static transition, and a dynamical evolution resulting from a mixture of mean-field-like
dynamics and activated processes.

In this context, the relevance of mean-field studies depends on the various timescales
involved: if the barriers between metastable states are low, activated processes are fast and
will dominate the evolution; if in contrast, the energy barriers are finite but large, there will
exist time windows in which the mean-field scenario will hold.

To address this question, we therefore have to gain knowledge of the metastable states,
both statically and dynamically, for the mean-field models, and to compare the emerging
picture and dynamical scenarios with the real world, or at least with numerical simulations.

If the structure of the TAP minima for a fixed temperature is rather well known [8, 9], a
much less coherent picture is available for the correlation of the free-energy landscapes for
different temperatures. In the Sherrington–Kirkpatrick model, the study in [10, 11] revealed
‘chaotic temperature dependence’ of the low-lying states. States of equilibrium at different
temperatures are, no matter how small the temperature differences, as uncorrelated as they
can. In some other models the chaotic property is absent. A clear example is the spherical
p-spin model, where the homogeneity of the Hamiltonian implies that the order of the
free-energy minima does not depend on temperature, so that, in the whole low-temperature
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phase, the statics is given by the same low-lying states. Some general conclusions about the
fate of TAP minima under temperature changes can be drawn on the basis of the smoothness
of the TAP free energy as a function of temperature. For example, absolutely stable minima
cannot disappear or multifurcate for an infinitesimal change of the temperature, and the
generation of new stationary points has to pass by a marginally stable situation.

Two issues appear to be relevant for the description of correlations of the landscapes
for different temperatures: level bifurcations and level crossing. Therefore, in this paper we
try to gain some generic insights into these topics, by addressing the issue of following the
TAP states in temperature for a spherical model which displays first-order glassy transition.
Different from thep-spin model, the Hamiltonian does not have the homogeneity which
prevents the chaoticity with respect to temperature changes. We therefore expect that its
behaviour is generic in the class of models with first-order transition. The analysis is
performed with the aid of a recent method where the metastable states are associated to
local minima of some macroscopic ‘potential’ function of the spin-glass order parameter.
The basic idea of this approach is that the free-energy manifold can be probed introducing
an external field pointing in the direction of some typical equilibrium configuration [12–14].
In section 2, we review the construction of the potential of [12] and, using a more general
ansatz [15], we extend the discussion to some properties not mentioned there. In particular,
the extension of the ansatz allows us to discuss, in section 3, the possibility of multifurcation
of the metastable states that we follow in temperature, a possibility not considered in [12].

In section 4, we use another powerful approach, a dynamical one, with appropriate initial
conditions: the dynamics of a system thermalized at a certain temperature, and then brought
at another, also allows us to explore the phase space of the system [12, 16]. We show that
the two methods yield the same results, as was suggested, but not proved for the general
case, in [12, 16], and use moreover this dynamical study to tackle another relevant issue:
the dynamical behaviour of the systems when a TAP solution bifurcates†. In particular, the
problem of whether the system will fall into one of the new valleys or will be unable to
decide where to fall and age forever.

After having described these mechanisms for the considered mean-field models, in
section 5 we tentatively compare them with the case of real glasses, via numerical
simulations of a soft sphere glass. In particular, the dynamical mean-field approach of
thermalized initial conditions can be thought of as a previous very slow cooling to a certain
temperature, followed by a rapid change. The study of the energy reached with various
cooling rates in the simulated system shows the relevance of the mean-field scenario, in the
available time window.

2. Studied models; the potential; previous results

The class of models we consider is defined byN (real) spinss = {s1, . . . , sN } interacting
through a HamiltonianH(s) and a global (spherical) constraint

∑
i s

2
i = N . The

Hamiltonian is random, Gaussian, with correlations

H(s)H(s′) = Nf (qss′) (1)

whereqss′ = 1/N
∑

i sis
′
i is the overlap between the configurationss and s′. If f is a

polynomial function, the Hamiltonian can be presented as a linear combination of terms of

† In [12], the ansatz used did not allow us to see the multifurcation, and the TAP solution seemed instead to
disappear, leaving the issue open of the correspondence between the dynamical and the statical approaches.
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the type

Hp(s) = −
∑

16i1<i2···<ip6N
Ji1i2···ip si1si2 · · · sip (2)

with Gaussian-independent couplingsJi1i2···ip , with zero mean and variancep!/(2Np−1).
It is easy to see thatHp(s)Hp′(s′) = δp,p′q

p

ss′/2. As we will see in the following, the
purely monomial case, the so-calledp-spin model, has remarkably simple properties under
temperature changes [9] thanks to the homogeneity of the Hamiltonian under contemporary
rescaling of all the variables. In order to study the generic behaviour it is therefore necessary
to consider the inhomogeneous Hamiltonian, giving rise to non-monomial correlation
functions. The specific form of the functionf (q) we will use in our examples will be
mainly f (q) = 1

2(q
3 + q4), however the results will be generic for the inhomogeneous

Hamiltonian verifying the condition thatf ′′(q)−3/2f ′′′(q) is monotonically decreasing with
q for all q (this ensures that the transition is a discontinuous one).

In that case the statics of the model is described by:
• a high temperature phase, forT > Td , where the dominant contribution is given by a

paramagnetic state;
• a temperature rangeTd > T > Ts where the replica calculations yield a replica-

symmetric result, which in fact corresponds to ergodicity breaking in an exponentially large
number of states (finite complexity);
• a low-temperature phase, forTs > T , with a one-step replica-symmetry breaking,

corresponding to the predominance of the lowest TAP states, with zero complexity.
The relaxation dynamics from a random initial state, yields equilibrium dynamics in the

paramagnetic state forT > Td , while, for Td > T , the aging phenomena appears [17] and
the long time limit of the energy per spin is higher than the equilibrium value.

In this section we review the construction of the potential function [12], and we expose
some new results coming from a replica-symmetry breaking ansatz [15], which clarify some
of the ‘mysteries’ left open in [12].

2.1. Construction of the potential

One of the characteristics of spin glasses, due to their random character, is that the different
equilibrium states cannot be selected by an external field uncorrelated with the landscape
defined by the Hamiltonian. The basic idea underlying the potential function is to use an
external field pointing in the direction of a particular equilibrium configuration [13, 12]. So,
if σi denotes a typical equilibrium configuration at a temperatureT ′ one can define the
partition function

Z[T , ε,σ] =
∑

S

e−βH [S]+εSσ. (3)

Besides being self-averaging with respect to the distribution of the quenched Hamiltonian,
the free energy0[T , T ′, ε] = −T/N logZ[T , ε,σ] is also independent on the particular
configurationσ we choose, and therefore coincides with its average over the probability
distribution exp(−β ′H [σ])/Z[T ′]. We define the ‘potential’ as the Legendre transform of
0:

V [T , T ′, q12] = min
ε
0[T , T ′, ε] + εq12− F [T ]. (4)

From the Legendre transform we have subtractedF the free energy at temperatureT in
order to haveV [T , T ′, 0] = 0. Defined in this way, the potential has the meaning of the
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free energy cost to keep a system at temperatureT at a fixed overlapq12 from a generic
configuration of equilibrium at a different temperatureT ′.

V is also self-averaging with respect to the quenched disorder distribution, which we
denote by an overline. The basic object we need to evaluate is then

1

Z[T ′]

∑
σ

e−β ′H [σ] log

(∑
S

e−βH [S]+εSσ
)
. (5)

It is explained in detail in [12] that in order to perform the averages it is possible to
use a double analytic continuation from integer values of the parametersm and n, used
to represent logZ[T , ε, σ ] as limm→0(Z[T , ε, σ ]m − 1)/m, and 1/Z[T ′] as limn→0Z

n−1.
There are thenn replicasσa (a = 1, . . . , n), andm replicasSα (α = 1, . . . , m). The
‘external field’ term is an interaction term of all the replicasSα with one privileged replica,
say,σ1. Three overlap matrices turn out to be relevant for the description of the physics
of the model: Q∗ab = 1

N

∑
i〈σai σbi 〉 describing the overlap statistics of the replicas at

equilibrium at temperatureT ′, Pa,α = 1
N

∑
i〈σai Sαi 〉 describing the overlaps among the

replicas at temperatureT ′ and the replicas at temperatureT , and finallyQαβ = 1
N

∑
i〈Sαi Sβi 〉

describing the overlaps between replicas at temperatureT . As is physically clear, it is found
that the structure of the matrixQ∗ab is not affected at the leading order by the presence of
the replicasSα. In this paper we will restrict ourselves to the temperature rangeT > TS,
whereQ∗ab = δab. In this regime it is sensible to assumePa,α = δa,1q12 for all α. The
structure of the matrixQαβ is more subtle. Assuming a single-state picture in [12] the
form Qαβ = δαβ + q(1− δαβ) was taken. But it turns out also to be necessary to consider
the possibility that ergodicity is broken for the system in a ‘field’, with consequent replica
symmetry breaking inQαβ . The most general ansatz we shall need is the ‘one step’ form
(see, e.g. [8]), characterized by the parameters(q0, q1, x). With this ansatz it easy to find
that the potential, as a function of all the order parameters, is [15]:

V (q12) = − 1

2β

{
2ββ ′f (q12)− β2((1− x)f (q1)+ xf (q0))+ x − 1

x
ln(1− q1)

−1

x
ln(1− (1− x)q1− xq0)+ q0− q2

12

1− (1− x)q1− xq0

}
(6)

whereV has to be maximized with respect toq0, q1 andx. These saddle-point equations
read:

q2
12 = q0− β2f ′(q0)(1− (1− x)q1− xq0)

2

β2(f ′(q1)− f ′(q0))(1− x) = (1− x) q1− q0

(1− q1)(1− (1− x)q1− xq0)

β2(f (q1)− f (q0))+ 1

x2
ln

(
1− q1

1− (1− x)q1− xq0

)
+ β2 (1− q1)

x
f ′(q1)

−β2f
′(q0)

x
(1− (1− x)q1− xq0) = 0.

(7)

A numerical resolution allows us to construct the curveV (q12)†.
In general, this curve can be divided into three regions. There are small and largeq12

regions (outside the interval A–B in figure 1) where replica symmetry holds. In between,
the symmetry is broken. In the largeq12 region, the solution isq1 = q0 testifying ergodicity

† In [12], the formQαβ = δαβ + q(1− δαβ) yielded simplified equations, corresponding toq0 = q1 in (7). The
resulting potential will be denoted as the ‘replica symmetric’ potential.
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Figure 1. PotentialV as a function ofq12, for thep = 3+ p = 4, β = 1.25, β ′ = 1.243; full
curve: replica symmetric solution; dotted curve: RSB solution, from A (x = 1) to B (whereq0

andq1 merge).

in a single state. In the point B a deAlmeida Thouless instability develops. The replica-
symmetry breaking region is interpreted as usual ergodicity breaking with dominance of
small number of valleys for typical samples. At the point A one findsx = 1, and the
restoring of replica symmetry implies in fact a number of valleys exponentially large
N ∼ eN6(q12). In this region (betweenq12 = 0 and A), x = 1, the Edwards–Anderson
parameter inside the valleys is obtained as the value ofq1 from the second equation of (7)
divided by (1− x) in x = 1, and is depicted with crosses in figure 2. The complexity
6(q12) can be calculated as in the usual case as∂V

∂x
|x=1, and is depicted in figure 3. For

q12 = 0, where there is no effective constraint, the second replica is at equilibrium atT

and we find the total complexity at temperatureT , and the equilibrium Edwards–Anderson
parameter atT .

The global situation is displayed for a typical example in figures 1 and 2.

2.2. Minima of the potential

The qualitative features of the potential are largely independent of the form of the functionf .
Let us briefly discuss the case of equal temperaturesβ = β ′ [12]. The potential always has
an absolute minimum forq12 = 0, corresponding, as previously mentioned, to the second
replica being at equilibrium. Another minimum appears for a non-zero value ofq12 for
temperatures belowTd (see figure 4) (atT = T ′ = Td , it is a horizontal flex). This relative
minimum corresponds to having both replicas in the same state, withq12 = q = qEA. Since
the number of equilibrium states at temperatureT is exp(N6(T )) by the definition of the
complexity (or configurational entropy)6, the free-energy cost of having this situation is

Vrelative minimum(qEA) = T6(T ) = −β
2
f (qEA)− qEA

2β
− 1

2β
ln(1− qEA). (8)

For thep-spin model, the case of different temperaturesβ andβ ′, has also been treated
in some details [12]. The relative minimum, which still exists for 0< T < Tfinal(T

′),
andT ′ < Td , remains in the replica-symmetric region of the potential, and can be clearly
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Figure 2. q0(q12), q1(q12) as a function ofq12, for thep = 3+ p = 4, β = 1.25, β ′ = 1.243
(lines); diamonds: RS solution, given by insertingq0 = q1 in (7); crosses: continuation of
q1(q12) in the first RS region, with limq12→0 q1(q12) = qEA(β).

Figure 3. 6(q12) for the p = 3+ p = 4, β = 1.25, β ′ = 1.243; for q12→ 0 we recover the
complexity atβ. At A the complexity goes to zero, corresponding to the entrance in the RSB
region of the potential.

interpreted. Indeed, the homogeneity of the Hamiltonian allows us to write the TAP free
energy in a simple form [9, 12, 18, 16]:

fTAP({mi}) = q
p

2E0({ŝi})− T
2

ln(1− q)− 1

4T
[(p − 1)qp − pqp−1+ 1] (9)

where we have writtenmi = 〈si〉 = √qŝi , with
∑

i ŝ
2
i = N , and the angular energy

(zero-temperature energy) is:

E0({ŝi}) ≡ − 1

N

∑
16i1<···<ip6N

Ji1,...,ip ŝi1 · · · ŝip . (10)
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Figure 4. PotentialV as a function ofq12, for thep = 3 p-spin model, forβ = β ′, from top
to bottomβ = 1.6, β = βd ≈ 1.633,β = 1.7; hereβS = 1.706.

The order in free energy of the solutions of the TAP equations does not depend on
temperature, nor can a solution bifurcate as the temperature is changed. All these solutions
can be easily parametrized [9, 12, 18, 16] and followed with temperature.

It is then easy to show that the properties of the primary minimum (value ofq0 = q1,
and energy) are precisely the properties of the TAP states of equilibrium atT ′ (characterized
by a zero-temperature energyE′0) followed atT (parameterq and energy), with

Vprimary= T6(T ′)+ FTAP(T ,E
′
0)− F(T ). (11)

This situation corresponds therefore to having the second replica in a TAP state of
equilibrium atT ′ followed atT †. This situation was also ascertained by the study of the
dynamics of a system thermalized atT ′, and whose temperature was then changed toT

[12, 16, 19]: the dynamics obtained is indeed of equilibrium in these particular TAP states,
chosen by the thermalization atT ′ and followed when the temperature of the system is
changed.

In the case wheref is different from a monomial, i.e. of an inhomogeneous
Hamiltonian, many points remained unclear. In particular, the TAP free energy cannot be
parametrized in such a simple form, and it is not granted that the TAP solutions keep their
order in free energy when the temperature changes. Moreover, the role of the breaking of
replica symmetry was not studied. In thep-spin model, as a consequence of the absence of
bifurcation of the solutions, the minimum of the potential is always in the replica-symmetric
region, and the inclusion of replica-symmetry breaking effects does not affect the discussion
of the metastable states, except for eliminating the spurious secondary minimum found in
[12], whose meaning was not clear.

For an inhomogeneous Hamiltonian, by studying the potential, including RSB effects,
and the dynamics with thermalized initial conditions, we will show that the potential still
allows us to determine the characteristics of TAP states, as long as the minimum is in the
replica-symmetric region. We will associate the entrance of the minimum in the RSB region

† Also note that, forβ ′ = βd , the minimum in fact becomes a horizontal flex of the potential, with the energy
and parameterq12 equal to those obtained in off-equilibrium dynamics.
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of the potential with bifurcations, and show that, in this case, the dynamics with thermalized
initial conditions gives rise to a particular form of aging.

3. Potential for an inhomogeneous Hamiltonian

Let us turn to the detailed study of the potential in the case of an inhomogeneous
Hamiltonian. The numerical examples will be given forf (q) = (q3+ q4)/2 for simplicity,
but the analysis is independent of this particular form.

We first note that, like for the homogeneous case, a minimum withq12 6= 0 only exists
for T ′ < Td . Moreover, we will limit ourselves toT ′ > Ts . For T = T ′, the primary
minimum is still in the replica-symmetric part of the potential. IfT is raised, this minimum
stays in the RS region, and disappears at a certain temperatureTfinal(T

′), which verifies
Tfinal(Td) = Td .

As T is lowered however, the endpoint of the RSB region (whereq0 = q1 ≡ q) gets
closer to the minimum, and finally reaches it atTrsb(T

′) = 1
βrsb

given by

β2
rsbf

′′(q)(1− q)2 = 1

β2
rsb(1− q)2f ′(q) = q − p̃2

βrsbβ
′f ′(p̃) = p̃

1− q

(12)

wherep̃ is the value ofq12 in the minimum. For even lower temperatures, the minimum is
within the RSB region.

Trsb(T
′) reaches zero for someT ′ (see figure 5); for lowerT ′, the minimum is always

in the RS region.
An example of the situationT > Trsb(T

′) is displayed in figure 1, while the limiting
caseT = Trsb(T

′) and a case whereT < Trsb(T
′) are shown in figure 6.

For temperaturesTfinal(T
′) > T > Trsb(T

′) the primary minimum can be interpreted as
the state of equilibrium at temperatureT ′ followed down at temperatureT . Indeed, if we

Figure 5. Tfinal(T
′) (full curve) and Trsb(T

′) (broken curve) forf (q) = 1
2(q

3 + q4);
Td ≈ 0.805 166. Note that at low enough temperatures, the states never bifurcate. The vertical
line corresponds toT ′ = Td , i.e. the temperature of the appearance of the minimum: along this
line the potential displays an horizontal flex.
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Figure 6. Potential forp = 3+ p = 4, for β ′ = 1.243 andβ = 1.4625 (top),β = 3 (bottom);
full curves=RS solution, broken curves=RSB solution. Forβ = 1.4625 the endpoint of the RSB
solution coincides with the minimum of the potential; forβ = 3 the minimum has disappeared
from the RS solution, while it still exists for the RSB curve.

consider the TAP states with values of the energy and of the parameterq equal to those
of the primary minimum, and if we compute their free energyfTAP, we obtain (see the
appendix):

Vprimary= fTAP− FRS(T ). (13)

Following the computation of [18, 20], it is also possible to obtain the number of TAP
solutions with fixed parameterq and energyETAP, and, writing it in the form

exp(NS(q,ETAP, T )) (14)

we have checked numerically the identity:

S(qpr , Eprimary, T ) = 6(T ′). (15)
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Figure 7. Total free energy.

Therefore, the number of equilibrium TAP solutions atT ′ (exp(N6(T ′))) is equal to the
number of TAP solutions atT with the energy and the parameterq of the primary minimum.
This fact, together with (13), shows that the state of equilibrium atT ′ has been followed at
T , and is a stable state with free-energy cost

Vprimary= T6(T ′)+ FTAP(Eprimary, q
pr , β)− FRS(T ) (16)

(where the total, i.e. with the complexity term, free energy of the TAP states is
FTAP(ETAP, q, β) = fTAP(ETAP, q, β)− T S(q,ETAP, T )). In the next section we will show
how these states can be followed dynamically, by choosing appropriate initial conditions.

In contrast, forT < Trsb(T
′) the primary minimum is in the region of the potential

which displays replica symmetry breaking†. The obvious interpretation for this is that at
Trsb(T

′), the metastable states multifurcate, according to the usual pattern known from the
physics of the Sherrington–Kirkpatrick model.

Let us now address the problem of level crossing: thep-spin model seems very
particular, in that the order in free energy of the TAP states does not depend on temperature.
For T < Ts , the statics are given by the lowest TAP states, therefore there are high
correlations between equilibrium states at different temperatures. On the other hand, for
temperatures betweenTs andTd , equilibrium measures at different temperatures are given
by different bunches of TAP states; therefore the overlap between equilibrium states at
different temperatures is zero, but the TAP states can be followed at other temperatures,
and their order in free energy (without the complexity term) remains the same.

For the case of an inhomogeneous Hamiltonian, we also show that, as long as we
consider TAP states giving the equilibrium measure at temperatures higher thanTs , we have
no crossing in the free energiesfTAP: indeed, if we notef (T , T ′) the free energy of one
TAP state of equilibrium atT ′, followed atT , we have

f (T , T ′) = Vprimary(T , T
′)+ F(T ) (17)

† Note thatTrsb(Td ) = Td , and that, forT ′ = Td , T < Td , the minimum is in fact a horizontal flex, like for the
homogeneous case, except that it lies within the RSB region of the potential. Besides, the energy in this point is
equal to the dynamical energy atT .
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and thus we obtain

∂

∂T ′
f (T , T ′) = f (q

pr

12 )

T ′2
. (18)

This quantity is always positive, so, if we have two temperaturesTd > T ′1 > T ′2 > Ts , at
any temperatureT for which we can follow the states giving equilibrium atT ′1 andT ′2, the
order

f (T , T ′1) > f (T , T ′2) (19)

is conserved. Of course, this is not the case if we consider the full free energy, with
the complexity term, i.e.F(T , T ′) = f (T , T ′) − T6(T ′). We then have that each curve
F(T , T ′) as a function ofT is tangent to the curveFRS(T ) at the point(T ′, F (T ′, T ′) =
FRS(T

′)).
Hence, this global situation, with the replica-symmetric free energy as the envelope

of the curves giving the total TAP free energies, whereas the curves giving the TAP free
energies without the complexity term do not cross, seems very generic between the static
and dynamic transitions.

Considering the case ofT ′ = Ts , the lowestT ′ for which we are allowed to use
the simple ansatzQ∗ab = δab, we find a different situation. In fact, we find that if
T < Ts the value of the potential in the primary minimum is slightly higher than 0, with
qEA(T ) = q1(q12→ 0) > qpr > q

pr

12 . This is in contrast to the case of thep-spin model, for
which the states of equilibrium atTs , followed atT , are still of equilibrium atT : these are
the lowest TAP states, and they dominate the equilibrium measure for temperatures ranging
from 0 to Ts . In this case we obtainVprimary = V (0), andqpr = q1(q12 → 0). Here, in
contrast, the difference between the quantities atq12 = 0 and at the primary minimum show
that the states of equilibrium atTs are no longer of equilibrium atT < Ts . Therefore, chaos
is present in temperature. For a detailed study of theT ′ < Ts region, we would however
need to take into account the RSB effects on the first replica, which would yield another
form for the potential, and we will not do it here.

4. Dynamics

We now address the problem of the dynamics of the system atT , starting from thermalized
initial conditions atT ′. In the case of thep-spin model, it was shown that such a procedure
allows us to dynamically reach the states described by the minimum of the potential, i.e. to
follow dynamically the TAP states. As usual, we study the Langevin relaxation dynamics
of the model, given by

dsi(t)

dt
= −∂H

∂si
− µ(t)si(t)+ ηi(t) (20)

where theηi are Gaussian thermal noises with〈ηi(t)ηj (t ′)〉 = 2T δij δ(t − t ′), andµ(t) has
to be computed self-consistently in order to implement the spherical constraint

∑
i s

2
i = N .

In the infiniteN limit, we can obtain the dynamical equations for the correlation and

response functions (C(t, t ′) = 1
N

∑
i 〈si(t)si(t ′)〉, r(t, t ′) = 1

N

∑
i 〈 ∂si (t)∂ηi (t ′)

〉) [12, 22], that for
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t > t ′ read:

∂r(t, t ′)
∂t

= −µ(t)r(t, t ′)+
∫ t

t ′
ds f ′′(C(t, s))r(t, s)r(s, t ′)

∂C(t, t ′)
∂t

= −µ(t)C(t, t ′)+
∫ t ′

0
ds f ′(C(t, s))r(t ′, s)

+
∫ t

0
ds f ′′(C(t, s))r(t, s)C(s, t ′)+ 1

T ′
f ′(C(t, 0))C(t ′, 0)

(21)

complemented by the equation that enforces the spherical condition

µ(t) =
∫ t

0
ds f ′(C(t, s))r(t, s)+

∫ t

0
ds f ′′(C(t, s))r(t, s)C(s, t)

+T + 1

T ′
f ′(C(t, 0))C(t, 0). (22)

In [12], it was noted that a numerical integration of (21) for a particular choice of the
temperatures, after some transient led to equilibrium with time translation invariance (TTI)
and validity of the fluctuation dissipation theorem (FDT). However, no systematic study
was undertaken.

As long as the primary minimum of the potential is in the replica-symmetric region
it is reasonable to take as an ansatz, that indeed an equilibrium regime is reached after a
short transient. We therefore deal with the functionsCas(τ ), ras(τ ) related by FDT, with
the introduction of the limiting quantities̃p andq:

C(t, t ′) = Cas(t − t ′); r(t, t ′) = ras(t − t ′); ras(τ ) = −β ∂
∂τ
Cas(τ )

lim
t→∞C(t, 0) = p̃; lim

τ→∞Cas(τ ) = q.
(23)

This ansatz yields the same equations forp̃ andq as those forq12 andq (33) specifying
the extremum of the potential in the RS region [12]. Besides, it coincides very well with
the results of a numerical integration of equations (21). We can therefore conclude that the
dynamics takes place in a TAP state, of equilibrium atT ′, in which the system was put at
T ′ by thermalization, followed dynamically at the new temperatureT . This behaviour is
exactly the same as that for thep-spin model [16].

For T < Trsb(T
′) another ansatz has to be chosen. In particular, since for low enoughT

the minimum disappears from the RS potential, the dynamical equations forp̃ andq have
no more solutions. We therefore propose an ansatz similar to the one used in the aging
dynamics of such models [17], except that the motion will be confined in the vicinity of
the initial state. We assume then that:
• for finite time separationsτ = t−t ′, with τ/t going to zero, the equilibrium properties

are valid, which means that we deal with the functionsCFDT(τ ) and rFDT(τ ), related by
FDT. We note that limτ→∞ CFDT(τ ) = q1;
• an aging regime is present: fort and t ′ going to infinity, without(t − t ′)/t → 0, TTI

is violated, and the FDT is replaced by the quasi-FDT

x
∂C(t, t ′)
∂t ′

= Tr(t, t ′) (24)

with constantx 6= 1. In this regime, we have the limits limt ′/t→1C(t, t
′) = q1,

limt ′/t→0C(t, t
′) = q0;

• we have moreover to introduce the quantity limt→∞ C(t, 0) = p̃, which tells us how
much the system remembers its initial conditions.
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As it happens in the random initial condition case, the parametersq1, q0, p̃, x can be
determined from the asymptotic analysis of equation (21) without fully solving the dynamics.
The hypothesis of the existence of an aging regime, and the continuity of the response
function implies the equation

β2f ′′(q1)(1− q1)
2 = 1 (25)

which coincides with the ‘marginal stability condition’ of the statics [23, 17]. The other
three equations

q1

β(1− q1)
= βf ′(q1)(1− q1)+ βx(q1f

′(q1)− q0f
′(q0))+ β ′p̃f ′(p̃)

p̃

β(1− q1)
= βp̃x(f ′(q1)− f ′(q0))+ β ′f ′(p̃)

q0

β(1− q1)
= βf ′(q0)(1− q1)+ βq0x(f

′(q1)− f ′(q0))+ β ′p̃f ′(p̃)

(26)

can be shown to be equivalent to the vanishing of the derivatives of the potential function 4
with respect toq1, q0 andq12. In terms of these parameters the asymptotic energy is given
by:

E = −β ′f (p̃)− β(f (1)− f (q1))− βx(f (q1)− f (q0)). (27)

The usual aging behaviour withq0 = p̃ = 0 is of course the solution of these equations.
This corresponds to forgetting the initial conditions, and happens whenT ′ is higher than the
dynamical transition temperature. However, forT ′ < Td , this solution, besides contrasting
with the statical picture of the model, would be internally contradictory: indeed, atTrsb

the energy in the primary minimum is lower than the dynamical energy at the same
temperature. Therefore, such a solution, which would yield an asymptotic energy equal
to the dynamical one, would lead to a higher energy for a lower temperature! Finally, the
numerical integration of the dynamical equations shows that the behaviour of the dynamical
quantities is very different from the case of infiniteT ′, and thatC(t, 0) does not seem
to decrease to zero. These facts lead to the conclusion that we must prefer the solution
with non-zeroq0 andp̃. The aging therefore takes place in a restricted phase-space region.
However, for T < Trsb(T

′) the dynamic internal energy is higher then the static one,
similarly to what happens starting from random initial conditions.

Let us also note that the asymptotic energy (27) in the case of thermalized initial
conditions is lower than the dynamical energy after a quench, showing that this procedure
allows us to reach states with lower energies. An immediate consequence is the importance
of the way in which the final temperature is reached.

5. A comparison with real glasses

5.1. General considerations

In the studied mean-field models, we found that, below the dynamical transitionTD,
we could define a whole spectrum of internal energies for the system at temperatureT ,
depending on the way the system has been put at its final temperature:
• the equilibrium energyEeq(T ), which is done by the usual Boltzmann Gibbs formula;
• the dynamical energy, corresponding to the energy of a system which is quenched to

the final temperature from a temperature higher thanTD;
• the energiesE(T ′, T ), obtained for a system at equilibrium atT ′ and then put atT .

Depending onT ′ andT , the system can be at equilibrium or exhibit aging dynamics.
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These energies can be consistently computed using the explicit form of the dynamics.
It is also possible to compute them by using the appropriate statistical prescription which
does not make explicit reference to the dynamics.

At this point the reader may ask how much all these findings are relevant for the real
world. Metastable states with aninfinite life do not exist in short-range finite-dimensional
models and their presence in mean-field models is a clear artifact of the approximation.
The would-be infinite life metastable states of the mean field theory do decay through some
activated processes (whose detailed properties have not yet been fully clarified). If the
mean-field picture is relevant for the real word the timescale of the activated processes
should be large enough that there is a time window in which the behaviour predicted by
the mean-field theory can be observed.

Given our lack of command on the activated processes, we cannot treat this question
analytically and we have to resort to numerical simulations. We will consider a simple
system, one of the prototypes of glass forming systems, known to have a glass transition at
a given temperatureTG.

We will see that we can also define various energies:
• the equilibrium energyEeq(T );
• the slow cooling energyES(T ), which is obtained by the limit to infinite cooling time

of the energy of a system which starts at temperatures greater than the dynamical transition;
• the fast cooling energyEF(T ), which is obtained by the limit to infinite cooling rate

of the energy of a system which is quenched to the final temperature from a temperature
higher thanTD.

BetweenES(T ) andEF(T ), various cooling rates will yield various asymptotic energies.
We will see that if we cool the system fast to a temperature near or belowTG (we have

investigated up to temperatures equal to 0.25TG) the energy as function of the time may be
represented by the following form

EF(t) = EF+ At−µ +O(t−2µ) (28)

where the exponentµ is in the range 0.5–0.7 and weakly depends on the temperature. The
previous formula well represent the data for time in the window 102–105 time units (i.e.
one Monte Carlo sweep).

In a similar way, we can represent the data for the slow-cooled energy as a function of
time with a similar form in the same time window:

ES(t) = ES+ At−µ +O(t−2µ) (29)

where the exponentµ is compatible to be equal to the one used in equation (28).
The two functionsEF and ES are different from one another belowTG and their

difference vanishes when we approachTG. It is clear that the two previous formulae can be
valid only in a limited time window; asymptotically the two energiesEF(t) andES(t) must
go to the same limit (i.e. the equilibrium value of the energy). This is likely to happen on
a much longer scale. Here we want to stress the presence of a time window in which the
prediction of a theory based on the existence of metastable states can be tested.

Before showing the results of the numerical simulations, we will give some details of
the model we consider.

5.2. The Hamiltonian

The model we consider is the following. We have taken a mixture of soft particles of
different sizes. Half of the particles are of typeA, half of typeB and the interaction among
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the particle is given by the Hamiltonian:

H =
∑
i<k

(
σ(i)+ σ(k)
|xi − xk|

)12

(30)

where the radius (σ ) depends on the type of particles. This model has been carefully studied
in the past [24–29]. It is known that a choice of the radius, such thatσB/σA = 1.2, strongly
inhibits crystallization and that the systems go into a glassy phase when it is cooled. Using
the same conventions as the previous investigators we consider particles of an average
diameter of 1, more precisely we set

σ 3
A + 2(σA + σB)3+ σ 3

B

4
= 1. (31)

Due to the simple scaling behaviouur of the potential, the thermodynamic quantities
depend only on the quantityT

1
4 /ρ, T and ρ being respectively the temperature and the

density. For definiteness we have takenρ = 1. It is usual to introduce the quantity04 ≡ β.
The glass transition is known to happen around0 = 1.45 (i.e. forT ≈ 0.226) [25].

5.3. Numerical results

Our simulations are done using a Monte Carlo algorithm, which is more easy to deal with
than molecular dynamics, if we change the temperature in an abrupt way. Each particle is
shifted by a random amount at each step, and the size of the shift is fixed by the condition
that the average acceptance rate of the proposal change is about 0.4. Particles are placed
in a cubic box with periodic boundary conditions. In our simulations we have considered
a relatively small number of particles, i.e.N = 66. Note that for all the simulations, the
system is always out of equilibrium and exhibits aging: the ergodic time is far beyond reach
[27, 28, 30].

We start by placing the particles at random and quench the system by putting it at its
final temperature (i.e. infinite cooling rate). The typical value of the energy density of the
initial configuration is very high (O(105)) due to the singular form of the potential and it
takes a few iterations to arrive at a more reasonable value. We show the data as a function
of Monte Carlo timet in figure 8 for0 = 1.8 (T ≈ 0.095).

In the slow cooling approach we also start by placing the particles at random at the
beginning. We divide the cooling time into five equal intervals: in the first interval we
have0 = 1, in the second interval0 = 1.2, . . . and the fifth interval0 = 1.8. The data
are taken for each temperature only in the second half of the corresponding interval. The
results, as a function of the time spent at each temperature, i.e. of the inverse of the cooling
rate, are shown in figure 8 for0 = 1.8. We clearly see that the two curvesEF andES

definitely extrapolate to a different value. The extrapolated values of the energy as function
of the temperature can be seen in figure 10 using the fast and the slow cooling method in
the region0 > 1.4 (T < 0.26). The data are not shown at higher temperatures, because
the two methods give the same result. Other procedures to investigate the dependence of
the cooling rate involve a similar cooling from0 = 1 to 0 = 1.8 in a total timetcooling,
with times tcooling/4 spent at0 = 1, 1.2, 1.4, 1.6, and then the study of the evolution of the
energy at0 = 1.8. The long time limit of the energy lies then betweenEF (for tcooling→ 0)
andES (for tcooling→∞). In figure 9 we show in the evolution of the energy at0 = 1.8 for
various cooling rates. The effects are quite small, so it is necessary to compare reasonably
different rates. For the available times, the energy of the system depends on the cooling it
has followed: the energy is lower for slower cooling procedures.
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Figure 8. ‘Fast’ curve: energy as a function oft−0.5 wheret is the time spent at0 = 1.8 after a
rapid quench; ‘slow’ curve: energy reached at the end of the time spent at0 = 1.8, as a function
of of t−0.5, wheret is the time spent at each temperature during the gradual quench process.
We see that slower cooling yields lower energies. The continuation tot−0.5 → 0 corresponds
to an infinitely slow cooling.

Figure 9. Evolution of the energy at0 = 1.8 (T ≈ 0.095), as a function of time, for various
cooling rates; the horizontal lines correspond toEF andES. The lower curves correspond to
slower coolings.

Moreover, it is worth noting that the value ofµ is, roughly speaking, independent of
the temperature [30]. This phenomenon happens in the only model of mean-field theory
where the exponent has been computed [31] and this is a strong indication that the approach
to equilibrium in this region is not dominated by activated processes, but more (roughly
speaking) by entropic barriers: the barriers between metastable states could include both
energetic and entropic effects [32]. Moreover, this shows the possible relevance of the
scenario detailed in the preceeding paragraph (aging similar to usual, but at lower energies),
and of some intuitive mean-field scenarios [33].
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Figure 10. Extrapolations of the energiesEF andES at large times, i.e. asymptotic energies
after a quench or an infinitely slow cooling, for various temperatures.

It would be interesting to be able to simulate the thermalization at a certain temperature,
followed by a quench at a lower temperature, like in mean-field models. Unfortunately, the
available time window does not allow us to reach thermalization at temperatures lower than
the dynamic transition.

Another possibility would be to cool the system very slowly to a certain valueT ′, such
that its energy is lower thanES(T ) for a certainT (T > T ′), and then to bring the system
back toT , to see whether the obtained energy is still lower thanES(T ). Such investigations
are however beyond the scope of this short study.

6. Summary and conclusions

In this paper we have investigated the behaviour in temperature of the metastable states
of long-range spin glasses with first-order freezing transition. We have shown that the
metastable states can be followed up and down in temperature, from the temperature
where they are dominating the partition function. Going up in temperature, one finds
some temperature where the states disappear, merging with some maxima. Going down
in temperature, the states never disappear, although in some range ofT ′ multifurcation is
found. We also studied the dynamics at temperatureT < Td , following a quench from
equilibrium at temperatureT ′. If T ′ > Td we find no difference from the usual aging
behaviour [17] that follows a quench from infinite temperature. ForT ′ < Td we have found
two possibilities. IfT > Trsb(T

′) the original valley has ‘deformed’ but not bifurcated and
the system is able to equilibrate inside it. In the complementary intervalT < Trsb(T

′) the
landscape has changed drastically as the original valley has bifurcated. The system is then
unable to thermalize and falls in an aging regime, while remaining confined in the vicinity
of the initial data. Besides, this dynamical study shows that the aging after a slow quench
(in the mean-field case, the case of thermalized initial conditions atT ′, can be thought of as
a situation after an infinitely slow quench) allows us to reach a situation where the behaviour
is qualitatively similar to the one after a rapid quench (i.e. aging corresponding to a slow
touring of the phase space), but within a phase-space region with lower energies. Therefore,
at a given temperatureT , the possibilities are not only of aging at a relatively high energy,
after a sudden quench, or of equilibrium dynamics after an infinitely slow quench, but also
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of aging at intermediate energies, depending on the route from a high temperature toT .
In the last section, we tried to emphasize the possible relevance of such mean-field

scenarios for finite dimensions, where it has been advocated that metastable states may still
exist, but with a finite lifetime: coming from a high-temperature phase, the system may be
able to find these states in a finite time, and the resulting aging behaviour when decreasing
the temperature could be a mixture of jumps between states and periods of wandering when
states bifurcate.

Indeed, the numerical study of section 5 shows indications that, at least in the explored
time window, for a soft sphere model of glass exhibiting aging, the dynamics is not
dominated by activated processes. Depending on the cooling rate from the high-temperature
phase, various energies can be reached. Since the system is finite, it should however reach
equilibrium in a finite time (the energy should reach the equilibrium energy, whatever the
route to the final temperature may be) but, these simulations show that, even for a relatively
small system, this finite time is very large, and therefore that mean-field conclusions can be
of importance in the real world.
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Appendix

We consider the case when the primary minimum of the potential is in the RS region:
q0 = q1 ≡ q. Then, for fixedT ′, we compute the value ofq12 andq for this minimum,qpr12
andqpr . The saddle-point equations forq0, q1, x reduce to

β2f ′(qpr) = qpr − qpr12
2

(1− qpr)2 (32)

and the equation∂V
∂q12
= 0 is

ββ ′f ′(qpr12 ) =
q
pr

12

1− qpr . (33)

The value of the potential is

Vprimary= −β ′f (qpr12 )+
β

2
f (qpr)− β

2
(1− qpr)f ′(qpr)− 1

2β
ln(1− qpr). (34)

The energy of the second replica, in this minimum, is

Eprimary= ∂

∂β
(βV + βF(T )) (35)

which yields

Eprimary= −β ′f (qpr12 )+ βf (qpr)− βf (1). (36)

On the other hand, we can write the TAP free energy as:

fTAP(H, q, β) = H − 1

2β
ln(1− q)− β

2
(f (1)− f (q)− (1− q)f ′(q)) (37)

whereq = 1
N

∑
i m

2
i , andH is the value taken by the HamiltonianH({mi}), so the energy

of a TAP statemi is

ETAP = ∂βf

∂β
= H − β(f (1)− f (q)− (1− q)f ′(q)). (38)
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Then, taking

Hpr = Eprimary+ β(f (1)− f (qpr)− (1− qpr)f ′(qpr) (39)

we obtain immediately that

Vprimary= fTAP(Hpr, q
pr , β)− FRS(T ). (40)

This means thatVprimary is the free-energy cost of having the second replica in a TAP state
with parameterqpr and energyEprimary at inverse temperatureβ.
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